skip to main content


Search for: All records

Creators/Authors contains: "Chambers, Lisa G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The use of loss on ignition (LOI) measurements of soil organic matter (SOM) to estimate soil organic carbon (OC) content is a decades-old practice. While there are limitations and uncertainties to this approach, it continues to be necessary for many coastal wetlands researchers and conservation practitioners without access to an elemental analyzer. Multiple measurement, reporting, and verification (MRV) standards recognize the need (and uncertainty) for using this method. However, no framework exists to explain the substantial differences among equations that relate SOM to OC; consequently, equation selection can be a haphazard process leading to widely divergent and inaccurate estimates. To address this lack of clarity, we used a dataset of 1,246 soil samples from 17 mangrove regions in North, Central, and South America, and calculated SOM to OC conversion equations for six unique types of coastal environmental setting. A framework is provided for understanding differences and selecting an equation based on a study region’s SOM content and whether mineral sediments are primarily terrigenous or carbonate in origin. This approach identifies the positive dependence of conversion equation slopes on regional mean SOM content and indicates a distinction between carbonate settings with mean (± 1 S.E.) OC:SOM of 0.47 (0.002) and terrigenous settings with mean OC:SOM of 0.32 (0.018). This framework, focusing on unique coastal environmental settings, is a reminder of the global variability in mangrove soil OC content and encourages continued investigation of broadscale factors that contribute to soil formation and change in blue carbon settings.

     
    more » « less
  2. Hurricanes can alter the rates and trajectories of biogeochemical cycling in coastal wetlands. Defoliation and vegetation death can lead to increased soil temperatures, and storm surge can variously cause erosion or deposition of sediment leading to changes in soil bulk density, nutrient composition, and redox characteristics. The objective of this study was to compare the biogeochemistry of pre-storm soils and a carbonate-rich sediment layer deposited by Hurricane Irma that made landfall in southwest Florida as a category 3 storm in September 2017. We predicted that indicators of biogeochemical activity (e.g., potential soil respiration rates, microbial biomass (MBC), and extracellular enzyme activities) would be lower in the storm sediment layer because of its lower organic matter content relative to pre-storm soils. There were few differences between the storm sediment and pre-storm soils at two of the sites closest to the Gulf of Mexico (GOM). This suggests that marine deposition regularly influences soil formation at these sites and is not something that occurs only during hurricanes. At a third site, 8 km from the GOM, the pre-storm soils had much greater concentrations of organic matter, total N, total P, MBC, and higher potential respiration rates than the storm layer. At this same site, CO2 fluxes from intact soil cores containing a layer of storm sediment were 30% lower than those without it. This suggests that sediment deposition from storm surge has the potential to preserve historically sequestered carbon in coastal soils through reduced respiratory losses. 
    more » « less
  3. Abstract

    Rates of organic carbon (OC) burial in some coastal wetlands appear to be greater in recent years than they were in the past. Possible explanations include ongoing mineralization of older OC or the influence of an unaccounted‐for artifact of the methods used to measure burial rates. Alternatively, the trend may represent real acceleration in OC burial. We quantified OC burial rates of mangrove and coastal freshwater marshes in southwest Florida through a comparison of rates derived from210Pb,137Cs, and surface marker horizons. Age/depth profiles of lignin: OC were used to assess whether down‐core remineralization had depleted the OC pool relative to lignin, and lignin phenols were used to quantify the variability of lignin degradation. Over the past 120 years, OC burial rates at seven sites increased by factors ranging from 1.4 to 6.2. We propose that these increases represent net acceleration. Change in relative sea‐level rise is the most likely large‐scale driver of acceleration, and sediment deposition from large storms can contribute to periodic increases. Mangrove sites had higher OC and lignin burial rates than marsh sites, indicating inherent differences in OC burial factors between the two habitat types. The higher OC burial rates in mangrove soils mean that their encroachment into coastal freshwater marshes has the potential to increase burial rates in those locations even more than might be expected from the acceleration trends. Regionally, these findings suggest that burial represents a substantially growing proportion of the coastal wetland carbon budget.

     
    more » « less